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The new developments concerning the possible metrization of structural chirality have 
drawn much attention recently. The main approach of  such quantification is based on the max- 
imal volume overlap between two enantiomorphs of a given chiral set. This approach raises 
an interesting problem concerning the shape of such a domain of overlap, namely, whether it is 
chiral or not. It is shown presently that for a two or three dimensional set if the maximal 
volume overlap is unique then it must be achiral. It is also shown that i fa  two-dimensional body 
is convex then by the Briinn-Minkowski theorem the maximal volume overlap of  the body 
with its enantiomorph is achiraL In addition, universal upper bounds for chiral coefficients Xn 
of convex sets in any dimension n are given, being X2 ~<0.3954 and X3 <~0.6977 for dimensions 
two and three, respectively. 

1. In t roduc t ion  

In recent years there has been an ever-increasing interest and activity in the phe- 
nomenon of structural chirality, in particular, in the attempts of quantifying it 
[1-8]. These attempts are mainly based on two different approaches: (a )The  
method of Hausdorff distances introduced by Rassat [1] and (b) the method of 
maximal overlap of two enantiomorphs of the same chiral set [3], based on the orig- 
inal approach of Kitaigorodskii [9]. These two approaches differ from one another 
in the degree of dimensionality of the elements chosen for quantification, one being 
sub-dimensional and the second is equi-dimensional. In other words, the first 
approach is using distances between points, whereas the second approach is using 
volumes (areas in dimension 2), being of the same dimension as is the space to 
which it refers. 

These features are discussed and analyzed in a recent article by the first author 
[10]. The main conclusion of this analysis is that the overlap method, based on an 
equi-dimensional element, i.e., the volume (area for 2d bodies) is of more general 
and substantial nature than the Hausdorff distances and hence more suitable for 
the purpose of quantifying chirality. Moreover, physical chiralities [3] are also 
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accessible to metrization by the overlap approach [10], but not  readily so for the 
Hausdorff  distances approach. 

It is the purpose of  the present article to analyze general properties ofchiral  bod- 
ies that are relevant to the approach of  maximal volume overlap of  a given chiral 
body with its enantiomorph,  being an arbitrarily displaced rotat ion of  a mirror 
image of  the body. 

One of  the main problems related to the overlap method concerns the possible 
shape of  such an overlap between two enantiomorphs of  the same body, or more 
specifically: "Is the shape of an overlap chiral or achiral?" It is quite feasible to 
guess that a general answer to such a question does not exist and that the shape of  
the maximal overlap depends on the nature of  the given chiral body. Nevertheless, 
it is hereby claimed that  for any 2-dimensional (2d) chiral convex body, the shape 
of  the maximal overlap between it and its enant iomorph is achiral. The same con- 
clusion holds true for 3d convex bodies provided we restrict the enant iomorph to 
take the form of translations of mirror images, and disallow rotations. In dimen- 
sion 2 this is not  a real restriction since a rotation does not play any role. This result 
is one of  the conclusions of the present article and in order to obtain it we need to 
prove two auxiliary theorems. One of these has already been introduced [3,10] and 
it concerns the general statement that if the shape of an overlap is chiral, then there 
exist two equal maximal overlaps, one being the mirror image of  another. The 
same conclusion is true for any chiral intersection between two enant iomorphs of 
the same chiral body. Moreover, in the case of any 2d body, the transition from one 
intersection to its mirror image can be accomplished by a linear translation of one 
enant iomorph of  the given body with respect to another. The situation for 3d con- 
vex bodies is more complicated since an enant iomorph of  a body allows a rotat ion 
and translation of  the mirror image. Nevertheless, it can be generally stated that  
for any 2- or 3-dimensional bodies, not necessarily convex, if the maximal overlap 
is unique then it must  be achiral. In the case of 2d convex sets it is possible to apply 
the Brfinn-Minkowski theorem [11,12] to a linearly displaced set and show that 
the volume of intersection of  the set with its enant iomorph is a concave [13] func- 
tion of  the amount  of  displacement. This is a conclusion derived from the second 
theorem, and it leads to the result that the maximal overlap of  two enant iomorphs 
of  a 2-dimensional convex chiral body cannot be chiral. 

In addition to this general conclusion, we use volume-ratio estimates to obtain 
values for upper bounds of  the chiral coefficient X which is a measure of  the amount  
of  geometric chirality [3]. These values can be estimated for any n-dimensional 
convex chiral body and the results for n = 2 and 3 are X~<0.3954 and 0.6977, 
respectively. 

In section 2 we state and prove the theorems necessary to show the achirality of  
the maximal overlap of two enantiomorphs of any 2- or 3-dimensional chiral body. 
In section 3 the numerical value for the upper bounds of  X are derived. The article 
is concluded in section 4. 
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2. Maximal  volume overlap ofchiral enantiomorphs 

Let D be an arbi t rary body  in ]R n, n = 2, 3. Let U = U / d e n o t e  a ro ta t ion  opera-  
tor  with respect to some axis represented by a unit  vec to r f .  Let  45 = 45e be the reflec- 
t ion opera tor  defined by: 45(x) = x -  2 ( x , e ) e ,  for all xe]R n, where e is a uni t  
vector and (x ,  e )  = Y]i~=l xiei. Note  that  45 is a reflection about  the mir ror -p lane  
(line in d imens ion  2) o r thogonal  to e, ee = {x --- (Xl , . . . ,  Xn); (x,  e)  = 0}. Let 

D* = U45(D) + b (1) 

be an enan t i omorph  of  D, and let us now consider the intersection 

A = D A D *  = D N  {U45(D) + b}. (2) 

N o w  we consider also A*, the mirror- image of A given by 

A* = 45('4) = 45(D)n {45U45(D) + 45(b)}. (3) 

Let us observe that  45 2 = I,  where I is the identi ty operator ,  and  the matr ix  repre- 
senting 45 = 45e where e = (el, e2, e3) is given by 

1 - 2 ~  -2e le2  -2ele3 

45 = -2e le2  1 - 2e~ - 2 e 2 e 3 / ,  (4) 

-2ele3 -2e2e3 1 - 2 ~ /  

and  det(45) = - 1 .  We now apply the ro ta t ion- t rans la t ion  m a p  defined for x e ~ 
by W ( x )  = 45U45(x) - 45U -1 (b) on A*, to obtain 

"4' = 45u45( '4" )  - 4 5 u - l ( b )  = 4 5 u - '  ( A) - 45U-'(b) 

= D n {45U- (D) - (5) 

A ~ is a rota ted-displaced variant  of  ,4" and is therefore identical in volume to "4. 
Both  "4 and "4t present  various intersections between D and its enan t iomorph  D*. 
Let M denote  the maximal  vo lume of '4 ,  namely  

M = max{u,~,b}VOln('4) = max{u,~,,b}VOln(D N { U45(D) + b}). (6) 

It  is impor t an t  to notice that  if "4 is chiral, then M is not  uniquely defined since 
the vo lume of  "4* = 45('4) is also equal to M. We shall call the pair of  uni t  vectors 
( e , f )  admissible if they are vectors in ]K s such tha t  ( e , f )  = 0. No te  that  if we 
restrict the a t tent ion  to IR 2 only, then ro ta t ion  U = UU in the x y  plane corresponds  
to a ro ta t ion  w i t h f  = (0, 0, 1) as axis, and  reflection 45 = 45e corresponds  to reflec- 
t ion abou t  the mirror- l ine {x = (Xl, x2); (x,  e)  = 0}, and  in this case e is in the xy  
plane, so o r thogona l  t o f .  

L E M M A  1 

I f  the pair  (e, f )  is admissible then (45e Uf) 2 = I and there exists a uni t  vector  
g e P f ,  i.e. ( f , g )  = 0, so that  45eUf = 45g. Conversely,  if (45eUf) 2 = I then either 
UU = I,  or 45e Uf = - I ,  or ( e , f )  is an admissible pair. 
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P r o o f  
The orthogonality condition is equivalent to saying that e lies in the plane Pf. 

Let us, without loss of generality, assume that e = (1,0, 0) a n d f  = (0, 0, 1) and let 
U = Uf be the rotation in the xy  plane by an angle 0 and set q~ = ~e. In matrix nota- 
tion then sin 0  0) ( i l0 i )  

 tsin/0/ • 1 
0 1 0 

If we choose now the vector g = (cos (0/2), sin(0/2), 0), then 

\ O  { -c ° s (O)  -s in(0)  0 /  
~ g =  I - s i n ( 0 )  cos(0) 0 ---~iU, (8) 

0 1 

so that (~U) 2 = ~g = I. 
Conversely, suppose (4~U) 2 = I where U = Uf and • = 4~e for some arbitrary 

unit vectors f ,  e in I~ 3. We may suppose t h a t f  = (0, O, l) so that Pf  is the xy  plane, 
and assume that (cos 0  !) 

U =  -s in(0)  cos(0) , (9) 

0 0 

where for the moment let sin(0) ¢ 0. We may also select the xy  axes so that e = (0, 
e2, e3), thus 

(i ° • = 1 - 2 ~  
-2e2e3 

Then 

-20e2e3 ]. 
1 -  2e32] 

(lO) 

cos(0) sin(0) 0 / 

• U =  -(1 - 2 ~ ) s i n ( 0 )  ( 1 - 2 ~ ) c o s ( 0 )  -2e2e3 . (11) 

2e2e3 sin(0) -2e2e3 cos(0) 1 - 2~  ] 

Now, ~ U  = U- I~  = U*~--  (~U)*, hence ~ U  is a symmetric matrix, implying 
2e2e3 sin(0) --- 0, i.e., e2e3 = 0. If e3 = 0 then e = (0, 4-1,0) which is orthogonal to f .  
If e2 --- 0 then e = (0, 0, :kl), and in the case 

{ cos(0) sin(0) 0 

• U =  l - s i n ( 0 ) c o s ( 0 )  0 ) ,  (12) 

\ o 0 -1  
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but  since ~ U  = (~/iU)* it follows that  s i n ( 0 ) =  0, which is impossible. To  
conclude,  suppose now that  sin(0) = 0. Then either 0 = 0, i.e. U = I, or 0 = 7r. 
In the latter case, since the 23 and 32 entries of  the matr ix  ~ U  in eq. (11) are identi- 
cal, it follows that  e2e3 = 0. So again either e = (0, +1 ,0)  which is o r thogonal  
to f ,  or e = (0, 0, +1),  and then the matr ix  ~ U  = - I ,  and this ends the p roo f  in 
d imens ion  3. 

In d imens ion  2 the p roo f  is trivial, indeed, for any ro ta t ion  U and reflection 
in the xy plane there is a vector g so that  • U = ~g, hence the ref lect ion-rotat ion • U 
amoun t s  to a reflection only, and of  course, we cannot  have ~ U  = - I  in the 
plane. [] 

An  interesting general geometr ic  result for n = 2 is presented in fig. 1. I f  we 
look at any union  of  D t_J D* and its mir ror  image (D t_3 D*)* and we pe r fo rm an 
exact overlap of  D of  one union  upon  its enan t iomorph ,  we obtain two identical 
bodies of  D* displaced f rom one another  by a pure translat ion.  The geometr ic  rea- 
son behind this result has to do with the invariance of  angles under  reflection and 
rotat ion.  This result does not  hold in I1~ 3, but  it is true for the special case of  

Let  us now look for the m a x i m u m  volume overlap M'  o f D  n {+(D) + b} taken  
over all reflections 45 and vectors b, 

M '  = max{+,b}voln(D N {+(D) + b}).  (13) 

U p o n  compar ing  M '  and M (eq. (6)) it is clear that  M/> M +. In d imension 3, how- 
ever, it is possible to construct  a convex body D such that  D is centrally (i.e. inver- 
sely) symmetric ,  meaning  D = - D ,  and so that  M '  < vo13 (D), or equivalently,  D is 
not  identical with any of  its mirror- images.  For  this body,  if we choose U+  = - I  
and  b = 0, we obtain A = D, hence M = vo13 (D) > M'.  Incidentally,  a centrally 
symmetr ic  body  of  odd-dimens ion  is therefore achiral. 

T H E O R E M  1 

(i) W h e n  n = 2, M = M'.  
(ii) I f  the m a x i m u m  M is at ta ined for a certain unique triple { U~ #, b}, then D 

has a ro ta t ion- t rans la t ion  symmetry,  i.e. the ro ta t ion  opera tor  (U#)  satisfies 

D = (U45)2(D)+ UCS(b) + b. (14) 

(iii) When  n = 3, if the m a x i m u m  M is unique and D has no ro t a t i on -  
t rans la t ion symmetry ,  then  either M = M'  or M is achieved for U ~  = - I .  

(iv) I f  the maximal  vo lume intersection body is unique,  then it is achiral. 

Proof 
(i) This is obvious because in d imension 2, every p roduc t  U~  of  a ro ta t ion  U 

and a reflection • is a reflection. 
(ii) I f  M is a t ta ined uniquely,  then by eqs. (2) and  (5), ~ U - I ( D  - b) = Uq~(D) 

+b,  i.e. D = (U~)2(D) 2 + b + U~(b). F o r n  = 2, since U ~ i s  a reflection, (U45) = I,  



42 G. Gilat, Y. Gordon/Geometricpropertiesofchiralbodies 

MP 

(a) 

(b) 

(c) 

Fig. 1. (a) The two enantiomorphs D and D* are schematically shown with reference to a mirror line 
MP, in a 2d space. An arbitrary line that intersects them is also shown. (b) D n D* and (D n D*)*, two 
mirror images of an arbitrary intersection of D and D* are shown with respect to MP. (c) The right 
hand side (RHS) of (b) is transformed by a rotational-translation (RT) transformation onto the LHS 
of the same figure, so that D overlaps precisely D of the LHS. The enantiomorph D* is seen to be dis- 
placed from the other D* by a translation T. By angular conservation under reflection it becomes 

clear that linear intersections on both D* must be parallel to one another. 

so tha t  D = D + b + U~(b) implies b -- - U~'(b), t he r e fo re  if  b ¢ 0, t hen  U ~  is 
the  re f lec t ion  o p e r a t o r  a b o u t  the m i r r o r  p lane  o r t h o g o n a l  to  b. 

(iii) In  this case by  eq. (14) ( U ~ )  2 = I and  b + U~,(b) = 0. By l e m m a  1, e i ther  
U = I, t hen  M = M ' ,  or  U ~  = - I .  

(iv) This  is obv ious  because  A o f e q .  (2) and  A' o f e q .  (5) have  the  same v o lu m e ,  
so b y  un iqueness ,  i f  A is m a x i m a l  then  it is ident ical  to  A '. W e  o b t a in  
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U (A) = W ( D n  - = A - b .  (15) 
[] 

We now state the classical Bri inn-Minkowski  theorem [11,12], which we shall 
need in the sequel [14-16]. 

T H E O R E M  2 

Let A, B be two compact  sets in the n-dimensional Euclidean space ]R n. Then for 
all0~<A~<l 

voln(AA + (1 - A)B)>/(vol.(A))~(voln(B)) 1-~ , (16) 

and [ 14] 

(voln(XA + (1 - A)B))I/n>~A(voln(A))Un + (1 - A)(voln(B)) 1/n . (17) 

A brief word about  the notation. The set AA + (1 - A)B denotes the comiex com- 
bination {Aa + (1 - A)b; a cA,  b e B}. We shall apply the theorem to a particular 
situation: 

Let ao, al, b0, bl and A0, A1, Bo, B1 be a collection of four points and four 
compact  sets in ]R n. Consider the intersection Ko = (a0 + A o ) N  (bo + B0) and 
K1 = (al + A 1 ) n ( b l  +B1)  and for all 0~<A~<I, let K ~ =  (ax+Aa) n (b~+B~) ,  
where a~ = Aal + (1 - A)a0 and A~ = hA1 + (1 - A)A0, and the b~, Bx are defined 
similarly. We claim that  

P R O P O S I T I O N  1 

For  all 0 ~< A ~< 1 

(vol. (IC0))l-~ (vol. (K1))A ~< vol. (K~). 

In particular,  

min{vol .  (K0), vol.  (K1) } ~< vol. (Ka). 

(18) 

(19) 

Proof 
We shall first show that any convex combinat ion of the sets K0 and K1, i.e., 

AK1 + (1 - A)Ko, is contained in K~. Indeed, if k0 ~Ko and kl ~K1, then they are of  
the form ko = ao + ao, and kl  = al + a l  where o~iEAi, ( i  = 0, 1). It follows that  
Akl + (1 - A)k0 = aA + Aal + (1 - A)a0~a~ +A~ ,  and similarly Akl + (1 - A)ko 
~b~ + Ba, implying that  AK~ + (1 - A)Ko c K~. 

By the Br i inn-Minkowski  inequality [11,12] we obtain that  

(vol,,(K0))l-'X(vol,,(K1)) "~ <voln(AK1 + (1 - A)K0) ~<vol,,(K;,). (20) 
[] 
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Remarks 
1. I f  we denote  byf(A)  the funct ion (voln(K~))l/n then the inequali ty 

f (A)  i> (vol.(AK1 + (1 - A)Ko)) 1/" ~>Af(1) + (1 - A)f(0), (21) 

implies tha t  the func t ionf (A)  is concave [13]. 
2. In the part icular  case where A0 = A1 = A and B0 = BI = B are both  convex 

bodies in ~", we have that  Aa = A and B~ = B for all 0 ~< A ~< 1, and  so taking 
a0 = b0 = bl = 0 (=  the origin), it follows that: I f  for some point  a e N" we have the 
equal i ty  vol .(A n B) = vol . ( (a  + A) N B), then for all points  x inside the interval 
[0, a], the rigid t ransla t ion of  A to x along the segment  [0, a] will have a larger inter- 
section with B than  at the end points  0 and a. This implies that  the funct ion  
vol . ( (x  + A) n B) for x ranging along any straight  line L achieves only one local 
maximum value V L in one unique interval IL. Therefore,  denot ing  by V = maxL VL, 
it follows that  {x; voln((X + A) n B) = V} is a convex set in N n. 

3. It is obvious that  the proposi t ion  and the remarks  above admi t  generaliza- 
t ions to intersections of  convex combinat ions  of  an arbi trary n u m b e r  of  sets. 

As a conclusion of  the above theorem,  it can now be shown that  there is an 
achiral maximal  volume overlap of  two enan t iomorphs  of  a given convex chiral 
body  D in N2; this result is due to the fact that  M = M ~ in d imension 2 and follows 
from: 

THEOREM 3 

Let D c N n be a convex body, n = 2, 3. The m a x i m u m  value M '  is a t ta ined  for 
an achiral intersection. 

Proof  
Using  eqs. (2) and  (5) with U = I,  we have seen that  v o l . ( A ) =  vol . (A ' )  

= vol .  (D n {~(D) - ~(b) }). Hence, by propos i t ion  1, for any A e [0, 1] the body  

z~A = D N  { ~ ( D ) -  A ~ ( b ) +  ( 1 -  A)b} (22) 

has vo lume at least M' ,  hence equal to M '  since M'  is max imum.  
Taking  A = ½, and using the fact that  ~2 = I,  we have that  the set 

A½-½b = (D - l b ) n  (q~(D) - ½~(b)) (23) 

has maximal  vo lume M'  and is invariant  under  the reflection ~, hence is achiral,  
implying that  A~_ is achiral. No te  tha t  in d imension 2, M = M' .  [] 

2 

3. Universal  bounds  for chiral coefficients in all dimensions 

The practical  calculat ion of  M,  M '  for chiral bodies is not  s t ra ight forward  and 
it m a y  require tedious computa t ions .  It is, therefore,  desirable to derive universal  
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bounds for these values. This can be done for any dimension n/> 1, and we now 
extend the definition of M described by eq. (6) for an arbitrary body D c N n, by 

Mn(D) = sup voln(DN{T(D)+b}) ,  (24) 
{Te 0,;det(T)=-I } 

where 0 ,  denotes the group of orthogonal matrices. Note  that  Mn(D) coincides 
with the value M defined by eq. (6) for dimensions 2, 3. Set now the chiral coeffi- 
cient of  D to be 

Mn(D) (25) 
xn(D) = 1 voln(D)" 

Clearly, 0 ~< xn(D) < 1. Note  that i fn is an odd integer, and i fD = - D  is a centrally 
symmetric body in ]R n, then xn(D) = O, since we may take T = - I  and b = 0. In 
general, we shall call a body D ~ ]R n achiral if xn(D) = O. In 2d space this means 
that  A coincides with its mirror-image about some line. 

A reasonable approach to obtain upper bounds for xn(D) is to find a body K 
which is contained in D and retains it geometric shape under the application of  
T e  (gn satisfying det(T) = -1 ,  so that it is contained in D* = T(D) as well. Such 
convenient bodies are ellipsoids in ]R n which are contained in D. Let us now look for 
the ellipsoid E (necessarily unique [17] when D is convex), of maximal volume that  
is contained in D. Since E retains its shape under all orthogonal transformations,  
then it is also contained in D* and as such can be contained intersections between D 
and D*, the volume of which must  satisfy voln (E) ~< voln (D N D* ) and hence 

voln(a) (26) 
xn(D)~<I voln(D) " 

The value (voln(D)/voln(E)) l/n is defined as the volume ratio of D and is denoted 
by vr(D). It was shown by Ball [18] that among all convex bodies D, vr(D) is maxi- 
mal if, and only if, D is a tetrahedron. Since vr(D) = vr(A(D)) for any affine trans- 
formation A, we may take the tetrahedron to be the n-dimensional regular 
te trahedron ~Yn which contains the n-dimensional unit ball B'~, where 

B~2= xeNn; ~<1 . (27) 
l, i=I 

For  this case [18], 

VOln(O'n) = nn/2(n +n!l)(n+l)/2 ' (28) 

v°l"(B~2) = F ( ~ +  1) ' (29) 

and so [ 19], 
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Xn(D) ~< 1 - (vr(D))-" ~< 1 - (vr(O'n))-n= 1 - v°ln(B~2) 
vol,(9",) (30) 

or, for any convex body D c JR" 

7rn/2n' (c) ./2 
x . (D)  ~< 1 -n./2(n + 1)(.+1)/2F(~ + 1) ~<1 - , (31) 

where c is a positive universal constant .  In particular,  the numerical  results for 
n = 2, 3 are 

7r 
x2(D) <~ 1 3 ~  - 0 .3954 . . .  , (32) 

7F 

xs(D)~<I 6 ~ -  0.6977 . . . .  (33) 

In addi t ion to these results it is interesting to compare  the upper  bound  obta ined  
for convex centrally symmetr ic  bodies, in 2-dimensional  space. The best upper  
bound  of  X for such a set is [20] 

x2(D) ~<3 - 2x/~ = 0.172 . . . .  (34) 

I t  is interesting to note  that  the same upper  bound  3 - 2x/~ exists also for triangles 
[21]. This upper  bound  is considerable less than  the value we obta in  for a general  
convex 2-dimensional  body. 

For  odd d imension n, we know that  if D is a convex and centrally symmetr ic  
body,  i.e. D = - D  c IR", then x,(D) = 0. But for even integers n ~>4 it is possible to 
improve  for such bodies the upper  bound  estimates for x,(D). It was shown by 
Ball [18] that  among  such bodies vr(D) is maximal  if and  only if D is a parallele- 
piped. Hence,  denot ing by Q, the regular cube, perpendicular  edges and side 
lengths equal to 2, which contains B~, since vol,  (Q,) = 2", we obta in  [19] for all cen- 
trally symmetr ic  bodies: 

x , ( D ) ~ < l - ( v r ( D ) ) - ' < ~ l - ( v r ( Q , ) ) - " = l  2 " F ( ~ + l ) "  (35) 

4. Conclusions 

A m o n g  the ma in  results of  the present  article is the one which proves tha t  the 
maximal  overlap of  two enan t iomorphs  of  any given convex 2-dimensional  body  is 
achiral. A special case of  this result is the Giering theorem [22] that  concerns trian- 
gles. It is also shown that  this result holds true in d imension 3 as well if the maximal  
overlap pertains to applicat ions of  mirror images, where no rota t ions  are allowed. 
For  general bodies, not  even necessarily convex or connected,  in d imensions  2 and  
3, this result is true when the maximal  overlap, taken over all reflection, ro ta t ions  
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and displacements, is unique, The main practical significance of  these conclusions 
is that  it may  become helpful for the purpose of  calculating the degree of  chirality of  
arbi t rary  bodies in 2d or 3d space. 

Another  result brought  here are upper bound  estimates for the chiral coeffi- 
cients Xn, being x2(D)~<0.3954 and x3(D)~<0.6977, for all convex bodies D in 
dimension 2 and 3 respectively. These estimates improve earlier results based upon  
symmetric  polyhedra  [23]. We have also obtained universal upper  bounds  for 
xn(D) for any dimension n and convex bodies D. 

M a n y  of  the results obtained in section 2 are readily extendable to n-dimen- 
sional spaces, but  the physical practicality of  the results is obviously limited to 
n = 2, 3 only. The t reatment  in the present context is applicable only to geometric 
chiralities. The subject o f  physical chiralities [3,10] cannot  be treated in a similar 
context  since in general a physical chiral set cannot  be classified [10] as convex or  
otherwise. Physical chiralities are more  meaningful in the context  o f "Ch i r a l  Inter- 
ac t ions"  that  have been introduced recently [24]. 
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